Issues of Beta Cell Dysfunction

Gordon C. Weir, M.D.
Joslin Diabetes Center

Beta Cell Meeting
Endocrine Society
January 10, 2009
A Diabetes Puzzle

How does diabetes start?

What is going on when someone’s fasting glucose rises from 83 to 95 mg/dl or when postprandial glucose level start to rise?

Hypothesis: Not enough β-cells
A Simple Hypothesis:
Primacy of Reduced β-Cell Mass in Diabetes

Relative/Absolute β-Cell Mass \downarrow

Glucotoxicity
Loss of β-Cell Phenotype \downarrow

β-Cell Function \downarrow
Reduced islet mass in T2DM

Autopsy Studies
Maclean, Ogilvie - 1955
Westermark, Wilander - 1978
Kloppel, et al - 1985
Butler, et al - 2003
Yoon, et al - 2003

All these studies show islet mass 40-60% of normal

The debate is over!
β cell volume in human type 2 diabetics is about 50% of non diabetic

Butler et al, Diabetes Jan 2003

Yoon et al, JCEM May 2003
Beta cell mass versus glucose - humans

Ritzel, Butlers, et al, Diabetes Care, 2006

FPG [mg/dl] vs. beta-cell area [%]

- O ND
- • IFG
- * OD

r = 0.50
Ways to have too few β-cells en route to T2DM

β-cell death problem: Apoptosis

β-cell birth problem:

1. Not enough at the beginning: Intra-uterine growth retardation
2. Inadequate β-cell replication
3. Inadequate neogenesis

Hard to study: No good test for β-cell mass. Rates of β-cell birth and death are very slow in humans.
Successful Compensation
No T2DM

Obesity Phase of Life

β-cell mass
Successful Compensation

Obesity phase of life

IGT

β-cell Death Problem

T2DM

Years
Successful Compensation

β-Cell Death Problem

β-Cell Birth Problem
(Intra-uterine Growth Retardation)

β-cell mass

10 20 30 40 50 60 70 80 90 100

Years
Progressive Loss of Glycemic Control in Obese Patients UKPDS

Open – Conventional
Cross – Metformin
Diamond - Intensive

UKPDS – Diabetes 44: 1249, 1995
Progressive Loss of Beta Cell Function in UKPDS – HOMA Studies

UKPDS – Diabetes 44: 1249, 1995

A
- Black diamonds - Sulfonylureas
- Open circles - Diet
- Crosses - Metformin

B
- Black diamonds - Sulfonylureas
- Open circles - Diet
- Crosses - Metformin

UKPDS – Diabetes 44: 1249, 1995
What Might Cause Accelerated β-cell Apoptosis in T2D?

• Areas of focus
 – Glucotoxicity
 – Lipotoxicity
 – Oxidative injury
 – Amyloid toxicity
 – ER stress
Five Stages

Stage 1: Compensation - Glucose “normal”

Stage 2: Stable Adaptation
 5.0-7.3 mM (89-130 mg/dl)

Stage 3: Unstable Early Decompensation
 7.3-16 mM (130-285 mg/dl)

Stage 4: Stable Decompensation
 16-20 mM (285-350 mg/dl)

Stage 5: Severe Decompensation - DKA
The Relationship Between Insulin Secretion and Insulin Resistance

Kahn SE, J Clin Endoc Metab. 86: 4047, 2001
With compensation, can a given β-cell mass put out much more insulin?

Absolutely yes!

Obesity has only about a 50% increase in β-cell mass (Kloppel, Butlers), but insulin secretory output increases 100%.
(24 hr output of insulin 468 versus 235 nmol)

Insulin secretion rates over 24 hours in obese versus lean subjects

Stage 2: Stable Adaptation

Approximate glucose levels 90-130 mg/dl - Includes IGT and IFG

Not compensation - glucose levels not “normal”.

Beta cell phenotype altered - GSIS reduced.

Stable - Diabetes Prevention Program (DPP) IGT progresses to diabetes at 11% per year, and with diet and exercise only 5% per year.

Occurs in pre-T1DM and remissions, but not as durable due to autoimmune destruction.
Effect of Fasting Plasma Glucose (FPG) on the Acute Insulin Response

Preservation of acute insulin secretion in response to an intravenous pulse of arginine in NIDDM

With glucotoxicity in T2DM, does a given β-cell mass put out much less insulin?

Absolutely yes!

In T2DM β-cell mass is reduced to about 50% of normal, but insulin output to maximum stimulus of glucose and arginine is only about 15% of normal.
Loss of glucose influence upon arginine-stimulated insulin secretion in NIDDM

Acute insulin response to arginine (µU/mL)

Plasma glucose (mg/dL)

Normal, n = 8
NIDDM, n = 8

β-cells exposed to even mild chronic hyperglycemia develop changes in phenotype characterized by dysfunctional insulin secretion associated with altered gene and protein expression.
Competing hypotheses

Glucotoxicity: Excellent correlation between rising glucose levels and β-cell dysfunction. Molecular basis not yet established.

Lipotoxicity: Little evidence to support. High FFA in obesity associated with terrific insulin secretion. Fat may be good for β-cells.

Gluco-lipotoxicity: Fallback position. Could be true, but most evidence is from in vitro cell studies, which may not be applicable to in vivo situation. Molecular basis not yet established. Lipid accumulation in β-cells may be modestly increased but may not be harmful.
Stage 4: Stable Decompensation

Frank diabetes

Stable because in T2DM DKA is rare and considerable amounts of insulin are produced for decades.

There is attrition of beta cells, which often leads to oral agent failure, but beta cell mass remains at 30-50% of normal.

T1DM progresses to Stage 5.
Stage 4

Natural Forces

Stage 2

Treatment
Diabetes Prevention Program (DPP) Research Group

The DREAM (Diabetes Reduction Assessment with ramipril and rosiglitazone Medication)
Debate about DPP

Are We Delaying the Onset of Diabetes

or

Preventing Diabetes?
Why β-cell Replenishment?

Because the problem with both type 1 and 2 diabetes is not enough β cells.

(Of course, autoimmune destruction must be prevented too.)
The Dream of β-cell Regeneration

- Replication of preexisting β-cells
- Differentiation of stem/progenitors in the ductal epithelium
- Budding of new islet
- New acinar cells
- Acinar transdifferentiation to β-cells
- Differentiation of stem/progenitors (not islet, duct or acinar)
β-cell Regeneration in Diabetes: The Task

- **Type 1 Diabetes:** Shut off autoimmunity, stimulate β-cell replication and neogenesis, inhibit apoptosis
- **Type 2 Diabetes:** Stimulate β-cell replication and neogenesis, inhibit apoptosis, and reduce insulin resistance
β-cell Regeneration

INGAP, EGF and gastrin, GLP-1, exendin-4

Neogenesis

Neogenesis
Enhanced insulin secretion
Replication
Anti-apoptosis

Budding new islet

Pancreatic duct

Katie Ris